United States Patent

US009477944B2

(12) 10) Patent No.: US 9,477,944 B2
Lee et al. 45) Date of Patent: Oct. 25,2016
(54) ASYNCHRONOUS SERIALIZATION FOR 2003/0233366 A1* 12/2003 Kesselman et al. ......... 707/100
AGGREGATING PROCESS RESULTS 2004/0139108 Al 7/2004 Tang et al.
2004/0148232 Al 7/2004 Fushimi et al.
. . 2007/0233581 Al™* 10/2007 Peter .......ccccoevervvnvecene. 705/27
(75) Inventors: Jasoy C. Lee, Union Clty, CA (US); 2007/0282882 Al 12/2007 Agarwal et al.
Terri A. Menendez, Richmond, MA 2008/0222604 Al*  9/2008 Murphy ........cccevvnene.. 717/120
(US) (Continued)
(73) Assignee: International Business Machines
Corporation, onk, NY (US) FOREIGN PATENT DOCUMENTS
) ) o ) EP 1102 188 A2 5/2001
(*) Notice:  Subject to any disclaimer, the term of this EP 1168 200 A2 1/2002
patent is extended or adjusted under 35 EP 1553492 A2 7/2005
U.S.C. 154(b) by 49 days.
OTHER PUBLICATIONS
(21) Appl. No.: 13/460,625
N. Rizzuto, How to implement Enhanced Catalog Sharing, Aug. 28,
(22) Filed: Apl‘. 30, 2012 2010.*
. L Plow and Shields, ICF Catalog Sharing Protocol at Record Key
(65) Prior Publication Data Granularity, IBM Technical Disclosure Bulletin, Sep. 1, 1992.*
US 2013/0290271 Al Oct. 31, 2013 “Implementing Synthetic Aggregate Search and Comparison Terms
for Catalogs of Information,” IPcom Prior Art Database,
(51) Int. CL IPCOMO000205551D, Mar. 30, 2911, 4 pages.
G060 10/10 (2012.01) (Continued)
G060 30/02 (2012.01)
GOG6F 17/30 (2006.01) Primary Examiner — Brittany N Allen
(52) US. CL (74) Attorney, Agent, or Firm — Zilka-Kotab, PC
CPC ... G060Q 10/10 (2013.01); G06Q 30/02
(2013.01); GOGF 17/30165 (2013.01); GO6F 7 ABSTRACT
. . . 17/30312 (2013.01) In one embodiment, a system includes logic adapted for
(58) Field of Classification Search receiving a first request to change a state of a first group of
CPC GOGF 17/30312 catalogs, determining which of a plurality of catalogs belong
USPC e 7 07/692, 696 in the first group, adding a change request for each of the
See application file for complete search history. first group of catalogs to a queue for processing, causing
. processing of each change request in the queue to change the
(56) References Cited state of each of the first group of catalogs according to the
U.S. PATENT DOCUMENTS first request, creating a first group result .indicating success-
ful or failed state change upon a catalog in the first group of
6,154,847 A * 11/2000 Schofield et al. ........... 714/44  catalogs finishing processing, passing the first group result
6,393,432 Bl 5/2002 Flansburg et al. to an adjacent catalog in the first group of catalogs, remov-
;’g‘s‘g’i ég gé : 43‘; 3882 %Zthk'OVtetlaL ~~~~~~~~~~~~~~~~ 770059/2 272(1) ing each catalog that has finished processing from the first
8:140:495 B2* 312012 Ca;)llirfetaél.“: 077696 group ofqatalogs, and outputt.ing the group result when there
8.676.720 B1* 3/2014 Neal ot al. oo 705/343 are no adjacent catalogs available to pass the group result.
2002/0023070 Al* 2/2002 Branch ... GOG6F 17/30008
2002/0111956 Al*  8/2002 Yeo et al. ....cccooeenn. 707/200 20 Claims, 4 Drawing Sheets
q‘ 342 304 306 368 ;*pg r__f}g{)
R
UCATSY 15 * UCATYY [P * UCATAZ { oy » UCATH3 !‘,,,,,,_’ : UCATZ
. ! . ! H 4




US 9,477,944 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2008/0263106 Al*
2009/0210429 Al*
2010/0049937 Al*

2010/0185697 Al*
2010/0191738 Al*

10/2008
8/2009
2/2010

7/2010
7/2010

Asherman et al. ........... 707/202
Agrawal et al. ................ 707/10

Chauvet ....... GOGF 3/0611

711/170
Lehretal ..ooceovvnnnne, 707/803
Lehretal ..ooceovvnnnne, 707/741

OTHER PUBLICATIONS
Tate et al., “Enhanced Catalog Sharing and Management,” IBM,
International Technical Support Organization, www.redbooks.ibm.
com, SG24-5594-00, Jul. 1999, pp. 1-148.
Jiminez et al., “ICF Catalog Backup and Recovery: A Practical
Guide,” IBM, International Technical Support Organization, ibm.
com/redbooks, SG24-5644-01, Dec. 2001, pp. 1-190.

* cited by examiner



U.S. Patent Oct. 25, 2016 Sheet 1 of 4 US 9,477,944 B2

106
\

FIG. 1



U.S. Patent Oct. 25, 2016 Sheet 2 of 4 US 9,477,944 B2

23
220
NETWORK
210 216 214 218 e
' 234
/ ! / ) -
i . O COMMUNICATION
CPU ROM RAM ADAPTER ADAPTER
212
238
222 336
224 \\USER -
- DISPLAY
INTERFACE R
ADAPTER

232 zzﬁg igz’%

FIG. 2



US 9,477,944 B2

Sheet 3 of 4

Oct. 25, 2016

U.S. Patent

as ‘oid
R ST BN
L2IYON g “:5 m w W%Wﬁ;il!l OEYON
P B o
00f oig 208 208
98 'Ol4
! NN TV IR - ]
P YN ] giivon L_siwon M HOYOD
P B o c
oof oLe 208 08 08
g¢ 'oOld
R R .
! QTN el QTN et —
HOVON el giivon e ziivon s PO ey HOLVOR
PR A Al p o
ane gig 8G¢ el ELEN 08
Ve 'Old
e v e L e .
LELVON e o ELIVON gt o CLIVON gt LLAVON .1......._ LG EYDN
| - | S < f s omempiomowes -
a0 ; R c R
00é g 808 908 $0¢ 0t




U.S. Patent Oct. 25, 2016 Sheet 4 of 4 US 9,477,944 B2

400

[ Receive a first reguest {o change a state of a first group
of catalogs . 402

v

[ Determine which of 3 plurality of catalogs belong in the ‘
first group A 404

v

Add a change request for sach of the first group of
catalogs {0 a queue for processing AN A08

Cause processing of each change request in the queue

to change the state of each of the first group of calalogs ™
according to the first request 408

“n

\,

Ve

¥
Create a first group result indicating successiul or failed
state change upon a catalog in the first group of catalogs N
finishing processing 410

" Pass the first group result to an adjacent catalog in the ]
first group of catalogs A 412

[ Remove each catalog that has finished processing from )
the first group of catalogs "\ 414

k 4
Output the group result when there ars no adjacent
catalogs avatlable to pass the group result AW 416

FIG. 4



US 9,477,944 B2

1

ASYNCHRONOUS SERIALIZATION FOR
AGGREGATING PROCESS RESULTS

BACKGROUND

The present invention relates to network switches and
switching, and more particularly, this invention relates to
aggregating process results using asynchronous serializa-
tion.

In mainframe operating systems, there is typically a vast
amount of data that is available, and therefore it is important
to minimize the amount of time that is used to search
through this data for particular data sets or files. Particularly,
in IBM z/OS,; it is possible to change the state of catalogs
(indexes) in order to modify some aspect of the catalog. At
the end of the modify command, the system needs to
aggregate all results of the state change from each user
catalog and display a message summarizing whether the
command has executed successfully. However, each modify
command inserts a group of elements into a double-linked
list, with each element representing a request to change a
catalog’s state. One problem with this process is how to
effectively process these elements, summarize the results,
and determine whether the last element in the group has been
executed for the message to display.

SUMMARY

In one embodiment, a system includes logic adapted for
receiving a first request to change a state of a first group of
catalogs, logic adapted for determining which of a plurality
of catalogs belong in the first group, logic adapted for adding
a change request for each of the first group of catalogs to a
queue for processing, logic adapted for causing processing
of each change request in the queue to change the state of
each of the first group of catalogs according to the first
request, logic adapted for creating a first group result indi-
cating successful or failed state change upon a catalog in the
first group of catalogs finishing processing, logic adapted for
passing the first group result to an adjacent catalog in the
first group of catalogs, logic adapted for removing each
catalog that has finished processing from the first group of
catalogs, and logic adapted for outputting the group result
when there are no adjacent catalogs available to pass the
group result.

In another embodiment, a computer program product
including a computer readable storage medium having com-
puter readable program code embodied therewith, the com-
puter readable program code including computer readable
program code configured for receiving a first request to
change a state of a first group of catalogs, computer readable
program code configured for determining which of a plu-
rality of catalogs belong in the first group, computer read-
able program code configured for adding a change request
for each of the first group of catalogs to a queue for
processing, computer readable program code configured for
causing processing of each change request in the queue to
change the state of each of the first group of catalogs
according to the first request, computer readable program
code configured for creating a first group result indicating
successful or failed state change upon a catalog in the first
group of catalogs finishing processing, computer readable
program code configured for passing the first group result to
an adjacent catalog in the first group of catalogs, computer
readable program code configured for removing each cata-
log that has finished processing from the first group of
catalogs, and computer readable program code configured

25

40

45

50

55

60

65

2

for outputting the group result when there are no adjacent
catalogs available to pass the group result.

In yet another embodiment, a method includes receiving
a first request to change a state of a first group of catalogs,
determining which of a plurality of catalogs belong in the
first group, adding a change request for each of the first
group of catalogs to a queue for processing, causing pro-
cessing of each change request in the queue to change the
state of each of the first group of catalogs according to the
first request, creating a first group result indicating success-
ful or failed state change upon a catalog in the first group of
catalogs finishing processing, passing the first group result
to an adjacent catalog in the first group of catalogs, remov-
ing each catalog that has finished processing from the first
group of catalogs, and outputting the group result when there
are no adjacent catalogs available to pass the group result.

Other aspects and embodiments of the present invention
will become apparent from the following detailed descrip-
tion, which, when taken in conjunction with the drawings,
illustrate by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 illustrates a network architecture, in accordance
with one embodiment.

FIG. 2 shows a representative hardware environment that
may be associated with the servers and/or clients of FIG. 1,
in accordance with one embodiment.

FIGS. 3A-3D are simplified diagrams illustrating stages
of state changes for a group of catalogs, according to one
embodiment.

FIG. 4 shows a flowchart of a method, according to one
embodiment.

DETAILED DESCRIPTION

The following description is made for the purpose of
illustrating the general principles of the present invention
and is not meant to limit the inventive concepts claimed
herein. Further, particular features described herein can be
used in combination with other described features in each of
the various possible combinations and permutations.

Unless otherwise specifically defined herein, all terms are
to be given their broadest possible interpretation including
meanings implied from the specification as well as meanings
understood by those skilled in the art and/or as defined in
dictionaries, treatises, etc.

It must also be noted that, as used in the specification and
the appended claims, the singular forms “a,” “an,” and “the”
include plural referents unless otherwise specified.

According to some embodiments, when changes are to be
made to a group of catalogs, such as in IBM z/OS, it is
possible to identify if the changes are successful or not
without needing to keep track of each operation individually.
Instead, an identifier is passed from one finished catalog to
the next until all catalogs have finished or failed, and then
this identifier indicates this effect. Therefore, these changes
to catalog states may be effectively processed, the results
summarized, and it may be determined if all processing has
completed.

In one general embodiment, a system includes logic
adapted for receiving a first request to change a state of a first
group of catalogs, logic adapted for determining which of a
plurality of catalogs belong in the first group, logic adapted
for adding a change request for each of the first group of
catalogs to a queue for processing, logic adapted for causing



US 9,477,944 B2

3

processing of each change request in the queue to change the
state of each of the first group of catalogs according to the
first request, logic adapted for creating a first group result
indicating successful or failed state change upon a catalog in
the first group of catalogs finishing processing, logic adapted
for passing the first group result to an adjacent catalog in the
first group of catalogs, logic adapted for removing each
catalog that has finished processing from the first group of
catalogs, and logic adapted for outputting the group result
when there are no adjacent catalogs available to pass the
group result.

In another general embodiment, a computer program
product including a computer readable storage medium
having computer readable program code embodied there-
with, the computer readable program code including com-
puter readable program code configured for receiving a first
request to change a state of a first group of catalogs,
computer readable program code configured for determining
which of a plurality of catalogs belong in the first group,
computer readable program code configured for adding a
change request for each of the first group of catalogs to a
queue for processing, computer readable program code
configured for causing processing of each change request in
the queue to change the state of each of the first group of
catalogs according to the first request, computer readable
program code configured for creating a first group result
indicating successful or failed state change upon a catalog in
the first group of catalogs finishing processing, computer
readable program code configured for passing the first group
result to an adjacent catalog in the first group of catalogs,
computer readable program code configured for removing
each catalog that has finished processing from the first group
of catalogs, and computer readable program code configured
for outputting the group result when there are no adjacent
catalogs available to pass the group result.

In yet another general embodiment, a method includes
receiving a first request to change a state of a first group of
catalogs, determining which of a plurality of catalogs belong
in the first group, adding a change request for each of the
first group of catalogs to a queue for processing, causing
processing of each change request in the queue to change the
state of each of the first group of catalogs according to the
first request, creating a first group result indicating success-
ful or failed state change upon a catalog in the first group of
catalogs finishing processing, passing the first group result
to an adjacent catalog in the first group of catalogs, remov-
ing each catalog that has finished processing from the first
group of catalogs, and outputting the group result when there
are no adjacent catalogs available to pass the group result.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as “logic,” a “circuit,” “mod-
ule,” or “system.” Furthermore, aspects of the present inven-
tion may take the form of a computer program product
embodied in one or more computer readable medium(s)
having computer readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a non-
transitory computer readable storage medium. A non-tran-
sitory computer readable storage medium may be, for
example, but not limited to, an electronic, magnetic, optical,

10

15

20

25

30

35

40

45

50

55

60

65

4

electromagnetic, infrared, or semiconductor system, appa-
ratus, or device, or any suitable combination of the forego-
ing. More specific examples (a non-exhaustive list) of the
non-transitory computer readable storage medium include
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a portable compact disc read-
only memory (CD-ROM), a Blu-ray disc read-only memory
(BD-ROM), an optical storage device, a magnetic storage
device, or any suitable combination of the foregoing. In the
context of this document, a non-transitory computer read-
able storage medium may be any tangible medium that is
capable of containing, or storing a program or application
for use by or in connection with an instruction execution
system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a non-transitory computer
readable storage medium and that can communicate, propa-
gate, or transport a program for use by or in connection with
an instruction execution system, apparatus, or device, such
as an electrical connection having one or more wires, an
optical fibre, etc.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fibre cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++, or the like, and other procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on a user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer or server may be
connected to the user’s computer through any type of
network, including a local area network (LAN), storage area
network (SAN), and/or a wide area network (WAN), or the
connection may be made to an external computer, for
example through the Internet using an Internet Service
Provider (ISP).

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatuses (systems), and computer program
products according to various embodiments of the invention.
It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
may be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.



US 9,477,944 B2

5

These computer program instructions may also be stored
in a computer readable medium that may direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

FIG. 1 illustrates a network architecture 100, in accor-
dance with one embodiment. As shown in FIG. 1, a plurality
of remote networks 102 are provided including a first remote
network 104 and a second remote network 106. A gateway
101 may be coupled between the remote networks 102 and
a proximate network 108. In the context of the present
network architecture 100, the networks 104, 106 may each
take any form including, but not limited to a LAN, a WAN
such as the Internet, public switched telephone network
(PSTN), internal telephone network, etc.

In use, the gateway 101 serves as an entrance point from
the remote networks 102 to the proximate network 108. As
such, the gateway 101 may function as a router, which is
capable of directing a given packet of data that arrives at the
gateway 101, and a switch, which furnishes the actual path
in and out of the gateway 101 for a given packet.

Further included is at least one data server 114 coupled to
the proximate network 108, and which is accessible from the
remote networks 102 via the gateway 101. It should be noted
that the data server(s) 114 may include any type of com-
puting device/groupware. Coupled to each data server 114 is
a plurality of user devices 116. Such user devices 116 may
include a desktop computer, laptop computer, handheld
computer, printer, and/or any other type of logic-containing
device. It should be noted that a user device 111 may also be
directly coupled to any of the networks, in some embodi-
ments.

A peripheral 120 or series of peripherals 120, e.g., fac-
simile machines, printers, scanners, hard disk drives, net-
worked and/or local storage units or systems, etc., may be
coupled to one or more of the networks 104, 106, 108. It
should be noted that databases and/or additional components
may be utilized with, or integrated into, any type of network
element coupled to the networks 104, 106, 108. In the
context of the present description, a network element may
refer to any component of a network.

According to some approaches, methods and systems
described herein may be implemented with and/or on virtual
systems and/or systems which emulate one or more other
systems, such as a UNIX system which emulates an IBM
7/OS environment, a UNIX system which virtually hosts a
MICROSOFT WINDOWS environment, a MICROSOFT
WINDOWS system which emulates an IBM z/OS environ-
ment, etc. This virtualization and/or emulation may be
enhanced through the use of VMWARE software, in some
embodiments.

In more approaches, one or more networks 104, 106, 108,
may represent a cluster of systems commonly referred to as
a “cloud.” In cloud computing, shared resources, such as
processing power, peripherals, software, data, servers, etc.,

5

10

15

20

25

30

35

40

45

55

60

65

6

are provided to any system in the cloud in an on-demand
relationship, thereby allowing access and distribution of
services across many computing systems. Cloud computing
typically involves an Internet connection between the sys-
tems operating in the cloud, but other techniques of con-
necting the systems may also be used, as known in the art.

FIG. 2 shows a representative hardware environment
associated with a user device 116 and/or server 114 of FIG.
1, in accordance with one embodiment. FIG. 2 illustrates a
typical hardware configuration of a workstation having a
central processing unit 210, such as a microprocessor, and a
number of other units interconnected via a system bus 212,
according to one embodiment.

The workstation shown in FIG. 2 includes a Random
Access Memory (RAM) 214, Read Only Memory (ROM)
216, an [/O adapter 218 for connecting peripheral devices
such as disk storage units 220 to the bus 212, a user interface
adapter 222 for connecting a keyboard 224, a mouse 226, a
speaker 228, a microphone 232, and/or other user interface
devices such as a touch screen, a digital camera (not shown),
etc., to the bus 212, communication adapter 234 for con-
necting the workstation to a communication network 235
(e.g., a data processing network) and a display adapter 236
for connecting the bus 212 to a display device 238.

The workstation may have resident thereon an operating
system such as the MICROSOFT WINDOWS Operating
System (OS), a MAC OS, a UNIX OS, etc. It will be
appreciated that a preferred embodiment may also be imple-
mented on platforms and operating systems other than those
mentioned. A preferred embodiment may be written using
JAVA, XML, C, and/or C++ language, or other program-
ming languages, along with an object oriented programming
methodology. Object oriented programming (OOP), which
has become increasingly used to develop complex applica-
tions, may be used.

In mainframe operating systems, indexes may store data
relating to locations of files on direct access storage devices
(DASD) and/or tape media. Specifically, in IBM z/OS,
catalogs comprise information relating to locations of data
sets on DASD and/or tape media. A catalog is organized as
a data set and includes records that relate to specific data sets
stored to media somewhere in the network.

According to embodiments presented herein, six modify
commands are available in IBM z/OS to change the state of
one or more user catalog (“ucat”) by using a wildcard in the
catalog name. The format for these modify commands are as
follows: F CATALOG:,state(ucat®), where state can be any
of the following six: RLSQUIESCE; RLSENABLE;
RECOVER,LOCK; RECOVER,UNLOCK; RECOVER,
SUSPEND; or RECOVER,RESUME. RLSQUIESCE is a
command that causes referenced catalogs to be accessed by
non-record level sharing (RLS) access methods on the next
access request. RLSENABLE is a command that causes
referenced catalogs to be accessed with RLS on the next
access request. RECOVER,LOCK is a command that locks
referenced catalogs, causing all access attempts to the locked
catalog to fail. RECOVER,UNLOCK is a command that
unlocks referenced catalogs, effectively allowing any access
attempts to proceed. RECOVER,SUSPEND is a command
that suspends access attempts for referenced catalogs and
possibly stores them to a queue, but does not fail the access
attempts. RECOVER,RESUME is a command that resumes
access attempts for referenced catalogs, possibly starting
with those stored to the queue.

F CATALOG,state(ucat*) changes the state of all user
catalogs that match the specified wildcard name. For
example, F CATALOG,LOCK(ucat1*) will lock catalogs



US 9,477,944 B2

7

ucatll, ucatl2, ucatl3, etc. Similarly, F CATALOG,LOCK
(ucat2*) will lock ucat21, ucat22, ucat23, etc.

At the end of each modify command, the system aggre-
gates all results of the state change from each user catalog
and displays a message summarizing whether the command
executed successfully. However, as stated earlier, each
modify command inserts a group of elements into a double-
linked list, with each element representing a request to
change a catalog’s state. Accordingly, using some tech-
niques, it is difficult to effectively process these elements,
summarize the results, and determine whether the last ele-
ment in the group has been executed to trigger the message
to be displayed.

One illustrative method comprises having one task pro-
cess each element one-by-one in the order it is inserted. In
one example, if ucatl1 and ucatl2 are issued, then ucat11 is
processed first, and when processing is complete, ucatl2 is
processed. For any further modify commands, the process-
ing occurs in series, with any serialization being waited for
synchronously. The group result of the modify command is
recorded and updated somewhere within the task’s autodata
area each time an element is done processing. When the next
element does not belong to the group, the result aggregation
is stopped and the group result is displayed. However, if the
task is stuck processing ucatll and is waiting for a serial-
ization, ucat12 will never be completed, which is a major
drawback to this method. Also, any modify commands
subsequent to the command on which the task is stuck, in
this example ucatll, will also need to wait, slowing the
efficiency of the method.

In another illustrative method, the method executes simi-
larly to the above example except that the single processing
task waits asynchronously for any serialization. This means
that if a task does not obtain a serialization right away, it puts
this element on hold and continues on to process the next
element(s). When the serialization is granted, the task then
gets driven again to process the element. The group result is
recorded and updated somewhere within the task’s autodata
area each time an element is done processing. The linked list
is traversed throughout to determine if it is the last element,
and if it is, the result is displayed, otherwise, the next
element is aggregated. However, traversing the linked list
throughout each time an element is done processing is very
costly, in time and processing power terms. Also, the results
kept in the task’s autodata area need to be structured because
multiple groups may be in the linked list, which is also
processing intensive.

In another illustrative method, the method executes simi-
larly to the two above examples, with an additional step of
recording the number of elements in the group as a counter
somewhere in the task’s autodata area. Them, after process-
ing of each element is complete, the counter is decremented
by one. When the counter is decremented down to one, the
group result is displayed. However, the task’s autodata area
still needs to have some kind of structures to track all the
values used in the processing, just as in the second example
but now also including the counter.

In one embodiment, a method of asynchronous serializa-
tion for aggregating process results is provided which over-
comes the drawbacks of the several illustrative methods
described briefly above. The method records the group result
in each element and passes it on to an adjacent element
(either a previous element or a next element) that is within
the group and is to be processed next. When none of the
adjacent elements is within the group, this indicates to the
processing element that the element being processed is the
last element in the group. At this point, the group result is

10

15

20

25

30

35

40

45

50

55

60

65

8

displayed. This technique eliminates the need to keep track
of the group result and element numbers in the task’s
autodata area when the task does not wait synchronously for
any serializations.

In one such embodiment, a record stored in virtual storage
access method (VSAM) volume data set (VVDS) to the
DASD, referred to herein as a catalog VSAM volume record
(VVR), may be used to indicate a state of any catalog (e.g.,
RLSENABLE; RECOVER,SUSPEND; etc.) stored to the
DASD or elsewhere. The VVR is a type of placeholder that
describes everything about a particular catalog and is stored
to the DASD in case all the systems are wiped out or erased,
then the information about the catalogs may be retrieved
from the DASD. Accordingly, whenever a catalog is open,
the status bit in the VVR may be read, and if the VVR
indicates that the catalog is RLSQUIESCE or RLSENABLE
then the system needs to process and understand this status
such that the catalog is opened in the same way that all of
the other systems are opening the catalog.

According to one embodiment, referring now to FIGS.
3A-3D, an example is provided to illustrate the method of
storing a group result from a wildcard request for a status
change in a group of catalogs. Referring to FIG. 3A, assume
that the following three commands are issued in the follow-
ing order:

1. F CATALOG,state(UCATO¥)

2. F CATALOG,state(UCAT1%*)

3. F CATALOG,state(UCAT2%*)
where state indicates one of many possible modify com-
mands, such as those described herein (e.g., RLSQUIESCE,
RECOVER,SUSPEND, etc.) or others.

Continuing with the example, assume that the modify
command F CATALOG,state(UCAT0*) adds UCATO1 302
into a queue 300 or chain of commands to process. Then,
following UCATO1 302, F CATALOG,state(UCAT1*) adds
UCATI11 304, UCAT12 306, and UCAT13 308 into the
queue 300. Once those commands are serialized to process
in the queue 300, F CATALOG,state(UCAT2*) adds
UCAT21 310 into the queue 300.

Continuing with the example, referring now to FIG. 3B,
assume that UCATO1 302 and UCAT21 310 are both taking
more time to finish processing than the other catalogs. For
example, UCAT12 306 finishes processing first, but fails to
change its state. UCAT12 306 updates its own ‘group result’
to FAILED to indicate this failed state change. UCAT12 306
also propagates the group result of FAILED to one adjacent
element, UCAT13 308 or UCAT11 304. In this example,
assume that the group result (FAILED) is propagated to
UCAT13 308 even though UCAT13 308 is not done pro-
cessing yet.

Then, for the sake of this example, referring now to FIG.
3C, assume that UCAT13 308 finishes processing success-
fully. However, since the group result of UCAT13 308
indicates FAILED by virtue of the propagation of the
FAILED group result from UCAT12 306, UCAT13 308
propagates the group result of FAILED to the only adjacent
element in the group, UCAT11 304, even though UCAT11
304 is not done processing yet.

Referring now to FIG. 3D, when UCAT11 304 finishes
processing successfully, it checks its adjacent elements
(UCAT21 310 and UCATO01 302) and finds that none of them
belongs to the same group (UCAT1*). Accordingly,
UCAT11 304 determines that it is the last element in the
group to finish processing, and therefore the group result is
output, which in the example is FAILED.

This method may be used not only to keep track of the
group state (FAILED or SUCCESS), but also a numerical



US 9,477,944 B2

9

result, in one embodiment. For example, if the request is to
count how many data sets these particular catalogs store
location information for, the count may be passed to an
adjacent element as it finishes processing just like the group
result state is passed along. The final element to finish
processing will then output the count. Similarly, a numerical
count may be kept of how many datasets are affected by the
catalog state changes, or some other numerical values.

In more embodiments, other types of information may be
passed from element to element in the group until all
elements are processed, as would be known by one of skill
in the art.

Now referring to FIG. 4, a flowchart of a method 400 is
shown, according to one embodiment. The method 400 may
be performed in accordance with the present invention in
any of the environments depicted in FIGS. 1-3, among
others, in various embodiments. Of course, more or less
operations than those specifically described in FIG. 4 may be
included in method 400, as would be understood by one of
skill in the art upon reading the present descriptions.

Each of the steps of the method 400 may be performed by
any suitable component of the operating environment. For
example, in one embodiment, the method 400 may be
partially or entirely performed by a processor, in one
approach, such as a central processing unit (CPU), applica-
tion specific integrated circuit (ASIC), field programmable
gate array (FPGA), etc.

In addition, the commands may be issued from one
system (or image) in a sysplex (comprising multiple sys-
tems), and may result in sysplex wide enable or quiesce of
the specified catalogs, e.g., all user catalogs (ucat*). In one
approach to avoid contentions and damage to catalogs,
catalog requests may be suspended when enabling/quiescing
RLS access. Furthermore, no catalog requests fail as a result
of the enable or quiesce, according to the embodiment
described herein.

Optional operations described below are those operations
which may be omitted, or may be performed once while
other operations are performed multiple times, or may be
performed by other entities are systems and relied upon by
other operations, according to various embodiments.

As shown in FIG. 4, method 400 may initiate with
operation 402, where a first request to change a state of a first
group of catalogs is received.

In operation 404, which of a plurality of catalogs belong
in the first group is determined.

In operation 406, a change request for each of the first
group of catalogs is added to a queue for processing.

In operation 408, processing of each change request in the
queue is caused in order to change the state of each of the
first group of catalogs according to the first request.

In operation 410, upon a catalog in the first group of
catalogs finishing processing, a first group result is created
indicating successful or failed state change.

In operation 412, the fast group result is passed to an
adjacent catalog in the first group of catalogs.

In operation 414, each catalog that has finished processing
is received from the first group of catalogs.

In operation 416, the group result is outputted when there
are no adjacent catalogs available to pass the group result. In
this way, after all catalogs have been processed in the first
group, the group result is output.

Outputting may include, but is not limited to, displaying,
reporting, sounding, storing to media, or any other method
of outputting as is known in the art.

In one embodiment, a failed state change of any catalog
in the first group of catalogs may cause the first group result

20

40

45

55

65

10

to indicate a failed state change. In this way, if one catalog
does not change states as requested, then the whole group is
reported as having failed the state change.

In another embodiment, a successful state change from all
catalogs in the first group of catalogs may be required in
order for the first group result to indicate a successful state
change. This is similar to the embodiment, except that the
status of successful is determined, instead of the status of
failed.

According to a further embodiment, the method 400 may
also include sending a message to each system having access
to the first group of catalogs to close the first group of
catalogs and receiving acknowledgement that all of the first
group of catalogs is closed prior to causing processing of
each change request in the queue to change the state of each
of the first group of catalogs. In this way, it may be ensured
that there will be no conflicts when changing the state of a
catalog due to the catalog being open on another system.

In yet another further embodiment, a second request may
be received to process additional catalog state changes. For
example, the method 400 may also include receiving a
second request to change a state of a second group of
catalogs, determining which of the plurality of catalogs
belong in the second group, adding a change request for each
of the second group of catalogs to the queue for processing,
causing processing of each change request in the queue to
change the state of each of the second group of catalogs
according to the second request, creating a second group
result indicating successful or failed state change upon a
catalog in the second group of catalogs finishing processing,
passing the second group result to an adjacent catalog in the
second group of catalogs, removing each catalog that has
finished processing from the second group of catalogs, and
outputting the second group result when there are no adja-
cent catalogs available to pass the second group result.

In another approach, the method 400 may further com-
prise passing a numerical counter with the first group result
to the adjacent catalog in the first group of catalogs and
outputting the numerical counter with the first group result.
In a further approach, the numerical counter may correspond
to a total number of records in each processed catalog, or any
other numerical value associated with catalogs and/or
changing states of catalogs.

In more embodiments, the method 400 or methods similar
to method 400 may be executed in a computer program
product using computer readable program code.

In even more embodiments, the method 400 or methods
similar to method 400 may be executed by a system using
logic adapted for carrying out the operations of method 400.

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of an embodiment of the present invention should
not be limited by any of the above-described exemplary
embodiments, but should be defined only in accordance with
the following claims and their equivalents.

What is claimed is:

1. A system, comprising:

a hardware processor configured to execute logic;

logic configured to receive a first request to change a state

of a first group of catalogs, the first group of catalogs
numbering three or more catalogs;

logic configured to determine which of a plurality of

catalogs belong in the first group by referring to a
catalog virtual storage access method (VSAM) volume
record (VVR) stored in a VSAM volume data set
(VVDS) on a direct access storage device (DASD),



US 9,477,944 B2

11

each catalog in the first group of catalogs being a same
type of catalog, wherein the VVR stores an individual
state of each catalog in the first group of catalogs;

logic configured to add a change request for each catalog
of the first group of catalogs to a queue for processing;

logic configured to cause processing of each change
request in the queue to change the state of each catalog
in the first group of catalogs to cause a state change of
each catalog in the first group of catalogs according to
the first request, wherein the state change is successful
when the state of a catalog being processed in the first
group of catalogs is changed as requested in the first
request, and wherein the state change is failed when the
state of the catalog being processed in the first group of
catalogs does not change as requested in the first
request;

logic configured to create a first group result indicating
successful or failed state change upon a first catalog in
the first group of catalogs finishing processing;

logic configured to update the first group result indicating
successful or failed state change and pass the first group
result to an adjacent catalog in the first group of
catalogs upon each catalog in the first group of catalogs
finishing processing;

logic configured to pass a numerical counter with the first
group result to the adjacent catalog in the first group of
catalogs upon each catalog in the first group of catalogs
finishing processing, the numerical counter tracking: a
total number of datasets affected by catalog state
changes, or a total number of records in all processed
catalogs;

logic configured to remove each catalog that has finished
processing from the first group of catalogs after it has
updated the first group result;

logic configured to update the VVR to reflect the indi-
vidual state of each catalog in the first group of catalogs
after processing of each catalog in the first group of
catalogs is complete; and

logic configured to display the group result when there are
no adjacent catalogs available to pass the group result.

2. The system as recited in claim 1, further comprising:

logic configured to send a message to each system having
access to the first group of catalogs to close the first
group of catalogs;

logic configured to receive acknowledgement that all of
the first group of catalogs is closed prior to causing
processing of each change request in the queue to
change the state of each of the first group of catalogs;
and

logic configured to display the numerical counter with the
first group result,

wherein the adjacent catalog in the first group of catalogs
is a user catalog that stores information relating to
locations of data sets,

wherein a failed state change of any catalog in the first
group of catalogs causes the first group result to indi-
cate a failed state change, and wherein a successful
state change from all catalogs in the first group of
catalogs is required in order for the first group result to
indicate a successful state change, and wherein each
catalog in the first group of catalogs stores data location
information, and

wherein the state of each of the first group of catalogs is
selected from a group consisting of: RLSQUIESCE:
RLSENABLE: RECOVER,LOCK: RECOVER,UN-
LOCK: RECOVER, SUSPEND, or RECOVER,RE-
SUME.

30

40

45

50

60

12

3. The system as recited in claim 2, wherein the logic
configured to cause processing of each change request in the
queue is further configured to open any catalog having a
state of RLSQUIESCE or RLSENABLE in a manner con-
sistent with how any other systems have opened the catalog.

4. The system as recited in claim 1, further comprising:

logic configured to receive a second request to change a

state of a second group of catalogs;

logic configured to determine which of the plurality of

catalogs belong in the second group;
logic configured to add a change request for each of the
second group of catalogs to the queue for processing;

logic configured to cause processing of each change
request in the queue to change the state of each of the
second group of catalogs according to the second
request;

logic configured to create a second group result indicating

successful or failed state change upon a catalog in the
second group of catalogs finishing processing;

logic configured to pass the second group result to an

adjacent catalog in the second group of catalogs;
logic configured to remove each catalog that has finished
processing from the second group of catalogs; and
logic configured to display the second group result when
there are no adjacent catalogs available to pass the
second group result.

5. The system as recited in claim 1, further comprising:

logic configured to display the numerical counter with the

first group result.

6. The system as recited in claim 5, wherein the first group
result is not tracked or stored to an autodata area, and
wherein the numerical counter is not tracked or stored to the
autodata area.

7. The system as recited in claim 5, wherein a failed state
change of any catalog in the first group of catalogs causes
the first group result to indicate a failed state change, and
wherein a successful state change from all catalogs in the
first group of catalogs is required in order for the first group
result to indicate a successful state change, and wherein each
catalog in the first group of catalogs stores data location
information.

8. A computer program product, the computer program
product comprising a non-transitory computer readable stor-
age medium having computer readable program code
embodied therewith, the computer readable program code
comprising:

computer readable program code configured for receiving

a first request to change a state of a first group of
catalogs, the first group of catalogs numbering three or
more catalogs;

computer readable program code configured for determin-

ing which of a plurality of catalogs belong in the first
group of catalogs by referring to a catalog virtual
storage access method (VSAM) volume record (VVR)
stored in a VSAM volume data set (VVDS) on a direct
access storage device (DASD), wherein the VVR stores
an individual state of each catalog in the first group of
catalogs;

computer readable program code configured for adding a

change request for each catalog of the first group of
catalogs to a queue for processing;

computer readable program code configured for causing

processing of each change request in the queue to
change the state of each catalog in the first group of
catalogs to cause a state change of each catalog in the
first group of catalogs according to the first request,
wherein the state change is successful when the state of



US 9,477,944 B2

13

a catalog being processed in the first group of catalogs
is changed as requested in the first request, and wherein
the state change is failed when the state of the catalog
being processed in the first group of catalogs does not
change as requested in the first request;

computer readable program code configured for creating

a first group result indicating successful or failed state
change upon a catalog in the first group of catalogs
finishing processing;

computer readable program code configured for passing

the first group result to an adjacent catalog in the first
group of catalogs;
computer readable program code configured for passing a
numerical counter with the first group result to the
adjacent catalog in the first group of catalogs upon each
catalog in the first group of catalogs finishing process-
ing, the numerical counter tracking: a total number of
datasets affected by catalog state changes, or a total
number of records in all processed catalogs;

computer readable program code configured for removing
each catalog that has finished processing from the first
group of catalogs;
computer readable program code configured for updating
the VVR to reflect the individual state of each catalog
in the first group of catalogs after processing of each
catalog in the first group of catalogs is complete; and

computer readable program code configured for display-
ing the group result when there are no adjacent catalogs
available to pass the group result.
9. The computer program product as recited in claim 8,
wherein a failed state change of any catalog in the first group
of catalogs causes the first group result to indicate a failed
state change, and wherein the adjacent catalog in the first
group of catalogs is a user catalog that stores information
relating to locations of data sets.
10. The computer program product as recited in claim 9,
further comprising: computer readable program code con-
figured for displaying the numerical counter with the first
group result.
11. The computer program product as recited in claim 10,
wherein the computer readable program code configured for
causing processing of each change request in the queue is
further configured for opening any catalog having a state of
RLSQUIESCE or RLSENABLE in a manner consistent
with how any other systems have opened the catalog, and
wherein each catalog in the first group of catalogs is a same
type of catalog.
12. The computer program product as recited in claim 8,
wherein a successful state change from all catalogs in the
first group of catalogs is required in order for the first group
result to indicate a successful state change.
13. The computer program product as recited in claim 8,
further comprising:
computer readable program code configured for sending a
message to each system having access to the first group
of catalogs to close the first group of catalogs;

computer readable program code configured for receiving
acknowledgement that all of the first group of catalogs
is closed prior to causing processing of each change
request in the queue to change the state of each of the
first group of catalogs; and
computer readable program code configured for display-
ing the numerical counter with the first group result,

wherein the adjacent catalog in the first group of catalogs
is a user catalog that stores information relating to
locations of data sets,

10

20

25

30

35

40

45

50

55

60

65

14

wherein a failed state change of any catalog in the first
group of catalogs causes the first group result to indi-
cate a failed state change, and

wherein a successful state change from all catalogs in the
first group of catalogs is required in order for the first
group result to indicate a successful state change, and
wherein each catalog in the first group of catalogs
stores data location information, and wherein the state
of each of the first group of catalogs is selected from a
group consisting of: RLSQUIESCE: RLSENABLE:
RECOVER,LOCK: RECOVER,UNLOCK:
RECOVER, SUSPEND, or RECOVER,RESUME.

14. The computer program product as recited in claim 8,

further comprising:

computer readable program code configured for receiving
a second request to change a state of a second group of
catalogs;

computer readable program code configured for determin-
ing which of the plurality of catalogs belong in the
second group;

computer readable program code configured for adding a
change request for each of the second group of catalogs
to the queue for processing;

computer readable program code configured for causing
processing of each change request in the queue to
change the state of each of the second group of catalogs
according to the second request;

computer readable program code configured for creating
a second group result indicating successful or failed
state change upon a catalog in the second group of
catalogs finishing processing;

computer readable program code configured for passing
the second group result to an adjacent catalog in the
second group of catalogs;

computer readable program code configured for removing
each catalog that has finished processing from the
second group of catalogs; and

computer readable program code configured for display-
ing the second group result when there are no adjacent
catalogs available to pass the second group result.

15. A method, comprising:

receiving a first request to change a state of a first group
of catalogs;

determining which of a plurality of catalogs belong in the
first group of catalogs by referring to a catalog virtual
storage access method (VSAM) volume record (VVR)
stored in a VSAM volume data set (VVDS) on a direct
access storage device (DASD), the first group of cata-
logs numbering three or more catalogs, wherein the
VVR stores an individual state of each catalog in the
first group of catalogs;

adding a change request for each catalog of the first group
of catalogs to a queue for processing;

causing processing of each change request in the queue to
change the state of each catalog in the first group of
catalogs to cause a state change of each catalog in the
first group of catalogs according to the first request,
wherein the state change is successful when the state of
a catalog being processed in the first group of catalogs
is changed as requested in the first request, and wherein
the state change is failed when the state of the catalog
being processed in the first group of catalogs does not
change as requested in the first request;

upon a catalog in the first group of catalogs finishing
processing, creating a first group result indicating suc-
cessful or failed state change;



US 9,477,944 B2

15

passing the first group result to an adjacent catalog in the

first group of catalogs;
passing a numerical counter with the first group result to
the adjacent catalog in the first group of catalogs upon
each catalog in the first group of catalogs finishing
processing, the numerical counter tracking: a total
number of datasets affected by catalog state changes, or
a total number of records in all processed catalogs;

removing each catalog that has finished processing from
the first group of catalogs;

updating the VVR to reflect the individual state of each

catalog in the first group of catalogs after processing of
each catalog in the first group of catalogs is complete;
and

displaying the group result when there are no adjacent

catalogs available to pass the group result.

16. The method as recited in claim 15, wherein a failed
state change of any catalog in the first group of catalogs
causes the first group result to indicate a failed state change,
and wherein the adjacent catalog in the first group of
catalogs is a user catalog that stores information relating to
locations of data sets.

17. The method as recited in claim 15, wherein a suc-
cessful state change from all catalogs in the first group of
catalogs is required in order for the first group result to
indicate a successful state change.

18. The method as recited in claim 15, further comprising:

sending a message to each system having access to the

first group of catalogs to close the first group of
catalogs;

receiving acknowledgement that all of the first group of

catalogs is closed prior to causing processing of each
change request in the queue to change the state of each
of the first group of catalogs; and

displaying the numerical counter with the first group

result,

wherein the adjacent catalog in the first group of catalogs

is a user catalog that stores information relating to
locations of data sets,

10

15

20

25

30

35

16

wherein a failed state change of any catalog in the first
group of catalogs causes the first group result to indi-
cate a failed state change, and

wherein a successful state change from all catalogs in the

first group of catalogs is required in order for the first
group result to indicate a successful state change, and
wherein each catalog in the first group of catalogs
stores data location information, and

wherein the state of each of the first group of catalogs is

selected from a group consisting of: RLSQUIESCE:
RLSENABLE: RECOVER,LOCK: RECOVER,UN-
LOCK: RECOVER, SUSPEND, or RECOVER,RE-
SUME.

19. The method as recited in claim 15, further comprising:
receiving a second request to change a state of a second
group of catalogs; determining which of the plurality of
catalogs belong in the second group; adding a change
request for each of the second group of catalogs to the queue
for processing; causing processing of each change request in
the queue to change the state of each of the second group of
catalogs according to the second request; upon a catalog in
the second group of catalogs finishing processing, creating
a second group result indicating successful or failed state
change; passing the second group result to an adjacent
catalog in the second group of catalogs; removing each
catalog that has finished processing from the second group
of catalogs; and displaying the second group result when
there are no adjacent catalogs available to pass the second
group result.

20. The method as recited in claim 16, further comprising:
displaying the numerical counter with the first group result,
wherein the causing processing of each change request in the
queue further comprises opening any catalog having a state
of RLSQUIESCE or RLSENABLE in a manner consistent
with how any other systems have opened the catalog, and
wherein each catalog in the first group of catalogs is a same
type of catalog.



